Principal subspaces of higher-level standard $\widehat{\mathfrak{sl}(n)}$-modules

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Subspaces of Higher-level Standard Sl(3)-modules

We use the theory of vertex operator algebras and intertwining operators to obtain systems of q-difference equations satisfied by the graded dimensions of the principal subspaces of certain level k standard modules for ŝl(3). As a consequence we establish new formulas for the graded dimensions of the principal subspaces corresponding to the highest weights iΛ1 + (k − i)Λ2, where 1 ≤ i ≤ k and Λ...

متن کامل

1 7 N ov 2 00 6 Principal subspaces of higher - level standard ̂ sl ( 3 ) - modules

We use the theory of vertex operator algebras and intertwining operators to obtain systems of q-difference equations satisfied by the graded dimensions of the principal subspaces of certain level k standard modules for ŝl(3). As a consequence we establish new formulas for the graded dimensions of the principal subspaces corresponding to the highest weights iΛ1 + (k − i)Λ2, where 1 ≤ i ≤ k and Λ...

متن کامل

Vertex - Algebraic Structure of the Principal Subspaces of Certain a ( 1 ) 1 - Modules , Ii : Higher Level Case

We give an a priori proof of the known presentations of (that is, completeness of families of relations for) the principal subspaces of all the standard A (1) 1-modules. These presentations had been used by Capparelli, Lepowsky and Milas for the purpose of obtaining the classical Rogers-Selberg recursions for the graded dimensions of the principal subspaces. This paper generalizes our previous ...

متن کامل

Vertex-algebraic Structure of the Principal Subspaces of Level One Modules for the Untwisted Affine Lie Algebras

Generalizing some of our earlier work, we prove natural presentations of the principal subspaces of the level one standard modules for the untwisted affine Lie algebras of types A, D and E, and also of certain related spaces. As a consequence, we obtain a canonical complete set of recursions (q-difference equations) for the (multi-)graded dimensions of these spaces, and we derive their graded d...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2015

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x15500536